Contenuti
Immagini
Carica la tua immagine
DSS Images Other Images
Articoli relazionati
Dust and CO emission towards the centers of normal galaxies, starburst galaxies and active galactic nuclei. I. New data and updated catalogue Aims.The amount of interstellar matter in a galaxy determines itsevolution, star formation rate and the activity phenomena in thenucleus. We therefore aimed at obtaining a data base of the12CO line and thermal dust emission within equal beamsizesfor galaxies in a variety of activity stages. Methods: .We haveconducted a search for the 12CO (1-0) and (2-1) transitionsand the continuum emission at 1300 μm towards the centers of 88galaxies using the IRAM 30 m telescope (MRT) and the Swedish ESOSubmillimeter Telescope (SEST). The galaxies are selected to be brightin the far infrared (S100~μ m 9 Jy) and opticallyfairly compact (D25≤ 180 arcsec). We have applied opticalspectroscopy and IRAS colours to group the galaxies of the entire sampleaccording to their stage of activity into three sub-samples: normal,starburst and active galactic nuclei (AGN). The continuum emission hasbeen corrected for line contamination and synchrotron contribution toretrieve the thermal dust emission. For the latter we have determinedthe radio spectral indices of the individual sources and extrapolatedthe synchrotron emission corresponding to our millimeter beams to 1300μm. Results: .We present new observational data for the12CO (1-0) and (2-1) transitions and the thermal dustemission at 1300 μm for 88 galaxies. In conjunction with our previousdata, the new observations are used to compile an updated catalogue fora total of 160 galaxies.Based on observations collected at ESO, La Silla, Chile, and IRAM, PicoVeleta, Spain. Appendices A and B are only available in electronic format http://www.aanda.org
| A Three-dimensional Study of the Local Environment of Bright IRAS Galaxies: The Active Galactic Nucleus-Starburst Connection We present a three-dimensional study of the local (<=100h-1 kpc) and the large scale (<=1 h-1 Mpc)environment of bright IRAS balaxies (BIRGs). For this purpose we use 87BIRGs located at high Galactic latitudes (with 0.008<=z<=0.018),as well as a control sample of nonactive galaxies having the samemorphological, redshift, and diameter size distributions as thecorresponding BIRG sample. Using the Center for Astrophysics and theSouthern Sky Redshift Survey galaxy catalogs (mb<~15.5),as well as our own spectroscopic observations (mb<~19.0),for a subsample of the original BIRG sample, we find that the fractionof BIRGs with a close neighbor is significantly higher than that oftheir control sample. Comparing with a related analysis of Seyfert 1 andSeyfert 2 galaxies by Koulouridis and coworkers, we find that BIRGs havea similar environment to that of Seyfert 2 galaxies, although thefraction of BIRGs with a bright, close neighbor is even higher than thatfor Seyfert 2 galaxies. An additional analysis of the relation betweenFIR colors and the type of activity of each BIRG shows a significantdifference between the colors of strongly interacting and noninteractingstarbursts and a resemblance between the colors of noninteractingstarbursts and Seyfert 2 galaxies. Our results support the view thatclose interactions can drive molecular clouds toward the galacticcenter, triggering starburst activity and obscuring the nuclearactivity. When the close neighbor moves away, starburst activity isreduced with the simultaneous appearance of an obscured (type 2) activegalactic nucleus (AGN). Finally, the complete disentanglement of thepair gives birth to an unobscured (type 1) AGN.
| Near-Infrared and Star-forming Properties of Local Luminous Infrared Galaxies We use Hubble Space Telescope (HST) NICMOS continuum and Paαobservations to study the near-infrared and star formation properties ofa representative sample of 30 local (d~35-75 Mpc) luminous infraredgalaxies (LIRGs, infrared [8-1000 μm] luminosities oflogLIR=11-11.9 Lsolar). The data provide spatialresolutions of 25-50 pc and cover the central ~3.3-7.1 kpc regions ofthese galaxies. About half of the LIRGs show compact (~1-2 kpc)Paα emission with a high surface brightness in the form of nuclearemission, rings, and minispirals. The rest of the sample show Paαemission along the disk and the spiral arms extending over scales of 3-7kpc and larger. About half of the sample contains H II regions withHα luminosities significantly higher than those observed in normalgalaxies. There is a linear empirical relationship between the mid-IR 24μm and hydrogen recombination (extinction-corrected Paα)luminosity for these LIRGs, and the H II regions in the central part ofM51. This relation holds over more than four decades in luminosity,suggesting that the mid-IR emission is a good tracer of the starformation rate (SFR). Analogous to the widely used relation between theSFR and total IR luminosity of R. Kennicutt, we derive an empiricalcalibration of the SFR in terms of the monochromatic 24 μm luminositythat can be used for luminous, dusty galaxies.
| The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies% The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39
| The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.
| The IRAS Revised Bright Galaxy Sample IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.
| First Results from the COLA Project: The Radio-Far-Infrared Correlation and Compact Radio Cores in Southern COLA Galaxies We present the first results from the COLA (compact objects in low-powerAGNs) project, which aims to determine the relationship between onefacet of AGN activity, the compact radio core, and star formation in thecircumnuclear region of the host galaxy. This will be accomplished bythe comparison of the multiwavelength properties of a sample of AGNswith compact radio cores to those of a sample of AGNs without compactcores and a matched sample of galaxies without AGNs. In this paper wediscuss the selection criteria for our galaxy samples and present theinitial radio observations of the 107 southern(δ<0deg) galaxies in our sample. Low-resolution ATCAobservations at 4.8, 2.5, and 1.4 GHz and high-resolution,single-baseline snapshots at 2.3 GHz with the Australian Long BaselineArray (LBA) are presented. We find that for the majority of the galaxiesin our sample, the radio luminosity is correlated with the far-infrared(FIR) luminosity. However, a small number of galaxies exhibit a radioexcess causing them to depart from the FIR-radio correlation. Compactradio cores are detected at fluxes greater than 1.5 mJy in nine of the105 galaxies observed with the LBA. The majority (8/9) of these galaxiesexhibit a radio excess, and 50% (7/14) of the galaxies that lie abovethe radio-FIR correlation by more than 1 σ have compact radiocores. The emission from the compact cores is too weak to account forthis radio excess, implying that there are radio structures associatedwith the compact cores that extend farther than the 0.05" resolution(corresponding to a linear scale 11-22 pc) of the LBA. There is noevidence that the radio luminosity of the compact cores is correlatedwith the FIR galaxy luminosity, indicating that the core contributeslittle to the overall FIR emission of the galaxy. The galaxies withcompact cores tend to be classified optically as AGNs, with two-thirds(6/9) exhibiting Seyfert-like optical emission line ratios, and theremaining galaxies classified either as composite objects (2/9) orstarburst (1/9). The galaxies classified optically as AGNs also exhibitthe largest radio excesses, and we therefore conclude that a large radioexcess on the radio-FIR correlation is a strong indication of an AGNwith a compact radio core.
| The Pico DOS Dias Survey Starburst Galaxies We discuss the nature of the galaxies found in the Pico dos Dias Survey(PDS) for young stellar objects. The PDS galaxies were selected from theIRAS Point Source catalog. They have flux density of moderate or highquality at 12, 25, and 60 μm and spectral indices in the ranges -3.00<= alpha(25, 12) <= + 0.35 and -2.50 <= alpha(60, 25) <=+0.85. These criteria allowed the detection of 382 galaxies, which are amixture of starburst and Seyfert galaxies. Most of the PDS Seyfertgalaxies are included in the catalog of warm IRAS sources by de Grijp etal. The remaining galaxies constitute a homogeneous sample of luminous[log F (L_B/L_ȯ) = 9.9 +/- 0.4] starburst galaxies, 67% of whichwere not recognized as such before. The starburst nature of the PDSgalaxies is established by comparing their L_IR/L_B ratios and IRAScolors with a sample of emission-line galaxies from the literaturealready classified as starburst galaxies. The starburst galaxies show anexcess of FIR luminosity, and their IRAS colors are significantlydifferent from those of Seyfert galaxies-99% of the starburst galaxiesin our sample have a spectral index alpha(60, 25) < -1.9. As opposedto Seyfert galaxies, very few PDS starbursts are detected in X-rays. Inthe infrared, the starburst galaxies form a continuous sequence withnormal galaxies. But they generally can be distinguished from normalgalaxies by their spectral index alpha(60, 25) > -2.5. This colorcutoff also marks a change in the dominant morphologies of the galaxies:the normal IRAS galaxies are preferentially late-type spirals (Sb andlater), while the starbursts are more numerous among early-type spirals(earlier than Sbc). This preference of starbursts for early-type spiralsis not new, but a trait of the massive starburst nucleus galaxies(Coziol et al.). As in other starburst nucleus galaxy samples, the PDSstarbursts show no preference for barred galaxies. No difference isfound between the starbursts detected in the FIR and those detected onthe basis of UV excess. The PDS starburst galaxies represent the FIRluminous branch of the UV-bright starburst nucleus galaxies, with meanFIR luminosity log (L_IR/L_ȯ) = 10.3 +/- 0.5 and redshifts smallerthan 0.1. They form a complete sample limited in flux in the FIR at 2 x10^-10 ergs cm^-2 s^-1.
| The Southern Sky Redshift Survey We report redshifts, magnitudes, and morphological classifications for5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than thislimit, in two regions covering a total of 1.70 sr in the southerncelestial hemisphere. The galaxy catalog is drawn primarily from thelist of nonstellar objects identified in the Hubble Space TelescopeGuide Star Catalog (GSC). The galaxies have positions accurate to ~1"and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes(m_SSRS2) from the relation between instrumental GSC magnitudes and thephotometry by Lauberts & Valentijn. From a comparison with CCDphotometry, we find that our system is homogeneous across the sky andcorresponds to magnitudes measured at the isophotal level ~26 magarcsec^-2. The precision of the radial velocities is ~40 km s^-1, andthe redshift survey is more than 99% complete to the m_SSRS2 = 15.5 maglimit. This sample is in the direction opposite that of the CfA2; incombination the two surveys provide an important database for studies ofthe properties of galaxies and their large-scale distribution in thenearby universe. Based on observations obtained at Cerro TololoInter-American Observatory, National Optical Astronomy Observatories,operated by the Association of Universities for Research in Astronomy,Inc., under cooperative agreement with the National Science Foundation;Complejo Astronomico El Leoncito, operated under agreement between theConsejo Nacional de Investigaciones Científicas de laRepública Argentina and the National Universities of La Plata,Córdoba, and San Juan; the European Southern Observatory, LaSilla, Chile, partially under the bilateral ESO-ObservatórioNacional agreement; Fred Lawrence Whipple Observatory;Laboratório Nacional de Astrofísica, Brazil; and the SouthAfrican Astronomical Observatory.
| A 1.425 GHz Atlas of the IRAS Bright Galaxy Sample, Part II Galaxies with δ >= -45^deg^ and |b| >= 10^deg^ in the IRASBright Galaxy Sample, Part II, were observed at 1.425 GHz by the VeryLarge Array in its B, CnB, C, DnC, and D configurations. An atlas ofradio contour maps and a table listing the principal radio sourceparameters (position, flux density, angular size) are given. This atlasof 187 galaxies supplements the 1.49 GHz atlas of 313 galaxies in therevised Bright Galaxy Sample, Part I. Together, they are complete forextragalactic sources stronger than S = 5.24Jy at λ = 60 micronsin the area |b| > 10^deg^, δ > -45^deg^. To the extent thatthe far-infrared and radio brightness distributions overlap, these radiomaps provide the most accurate positions and high-resolution images ofthe brightest extragalactic far-infrared sources.
| Dust and CO emission in normal spirals. I. The data. We present 1300μm continuum observations and measurements of the CO(1-0) and (2-1) emission from the inner regions of 98 normal galaxies.The spatial resolution ranges from 11" to 45". The sources come from acomplete FIR selected sample of 138 inactive spirals with an opticaldiameter D_25_<=180".
| Multiwavelength Energy Distributions and Bolometric Luminosities of the 12 Micron Galaxy Sample Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...453..616S&db_key=AST
| The IRAS Bright Galaxy Survey - Part II: Extension to Southern Declinations (delta ~< -30), and Low Galactic Latitudes (f<|b|=30 degrees) Complete IRAS Observations and redshifts are reported for all sourcesidentified in the IRAS Bright Galaxy Survey-Part II (hereafter referredto as BGS_2_). Source positions, radial velocities, optical magnitudes,and total flux densities, peak flux densities, and spatial extents at12, 25, and 100 ,microns are reported for 288 sources having 60 micronflux densities > 5.24 Jy, the completeness limit of the originalBright Galaxy Survey [Soifer et al., AJ, 98,766(1989)], hereafterreferred to as BGS_1_. These new data represent the extension of theIRAS Bright Galaxy Survey to southern declinations,δ<~-30^deg^, and low Galactic latitudes,5^deg^<|b|<30^deg^. Although the sky coverage of the BGS_2_ (~19935 deg^2^) is 37% larger than the sky coverage of the BGS_1_, thenumber of sources is 8% smaller due primarily to large scale structurein the local distribution of galaxies. Otherwise, the sources in theBGS_2_ show similar relationships between number counts and flux densityas observed for the 313 sources in the BGS_1_. The BGS_2_ along with theearlier BGS, represents the best sample currently available for definingthe infrared properties of galaxies in the local (z <~ 0.1) Universe.
| The extended 12 micron galaxy sample We have selected an all-sky (absolute value of b greater than or equalto 25 deg) 12 micron flux-limited sample of 893 galaxies from the IRASFaint Source Catalog, Version 2 (FSC-2). We have obtained accurate totalfluxes in the IRAS wavebands by using the ADDSCAN procedure for allobjects with FSC-2 12 micron fluxes greater than 0.15 Jy and increasingflux densities from 12 to 60 microns, and defined the sample by imposinga survey limit of 0.22 Jy on the total 12 micron flux. Its completenessis verified, by means of the classical log N - log S andV/Vmax tests, down to 0.30 Jy, below which we have measuredthe incompleteness down to the survey limit, using the log N - log Splot, for our statistical analysis. We have obtained redshifts (mostlyfrom catalogs) for virtually all (98.4%) the galaxies in the sample.Using existing catalogs of active galaxies, we defined a subsample of118 objects consisting of 53 Seyfert 1s and quasars, 63 Seyfert 2s, andtwo blazars (approximately 13% of the full sample), which is the largestunbiased sample of Seyfert galaxies ever assembled. Since the 12 micronflux has been shown to be about one-fifth of the bolometric flux forSeyfert galaxies and quasars, the subsample of Seyferts (includingquasars and blazars) is complete not only to 0.30 Jy at 12 microns butalso with respect to a bolometric flux limit of approximately 2.0 x10-10 ergs/s/sq cm. The average value of V/Vmaxfor the full sample, corrected for incompleteness at low fluxes, is 0.51+/- 0.04, expected for a complete sample of uniformly distributedgalaxies, while the value for the Seyfert galaxy subsample is 0.46 +/-0.10. We have derived 12 microns and far-infrared luminosity functionsfor the AGNs, as well as for the entire sample. We extracted from oursample a complete subsample of 235 galaxies flux-limited (8.3 Jy) at 60microns. The 60 micron luminosity function computed for this subsampleis in satisfactory agreement with the ones derived from the brightgalaxy sample (BGS) and the deep high-galactic latitude sample, bothselected at 60 microns.
| The far-infrared/H-alpha correlation of extreme IRAS galaxies Using IRAS IR data and H-alpha CCD data for a sample of 38 FIR selectedstarburst galaxies with FIR luminosities ranging from 109 to 5 x 10 exp11 solar luminosities, we find that the FIR and H-alpha luminosities arecorrelated. The average value of log(L(FIR)/L exp 0(H-alpha)) equals 1.9+/- 0.1. The H-alpha luminosities have been corrected for reddeningusing H-alpha/H-beta line ratios. The relation between the FIR anduncorrected H-alpha luminosities of optically selected normal galaxiesand FIR selected starburst galaxies indicates that the dust absorptionin H-alpha increases smoothly with increasing luminosities. Applicationof a simple starburst model to the L(FIR/L exp 0(H-alpha)) correlationindicates that in a starburst stars are formed up to masses of 60 solarmasses. Star formation rates derived for these starburst galaxies rangefrom 0.3 to 300 solar masses/yr. Estimates of the available gas massesindicate that these star formation rates can be sustained for at least10 exp 8 yr.
| The supergalactic plane redshift survey Redshift measurements, about 1000 of which are new, are presented for1314 galaxies in a survey toward the apex of the large-scale streamingflow for ellipticals. The velocity histogram shows that the excess ingalaxy number counts in this area is due to a substantial concentrationof galaxies with discrete peaks at V about 3000 km/s and V about 4500km/s. After correction for the sampling function, the centroid of thedensity distribution is found to be near V about 4500 km/s.Normalization to the more extensive SSRS survey, which was selected bythe same criteria, shows that the region studied contains a considerableoverdensity of galaxies from 2000 to 6000 km/s. This result is in goodagreement with the 'great attractor' model suggested by Lynden-Bell etal. (1988) which attributes the peculiar motions of elliptical galaxiesover a large region of space to an extensive mass overdensity whichincludes the Hydra-Centaurus and Pavo-Indus superclusters. The centroidof the density enhancement is also consistent with new data by Dresslerand Faber (1990) of peculiar motions of elliptical and spiral galaxies,both of which show a zero crossing of the Hubble line at approximately4500-5000 km/s.
| A study of southern extreme IRAS galaxies. I - Optical observations Optical observations are presented and spectra, broadband, color andcontinuum-subtracted H-alpha CCD images are shown for more than 50galaxies in order to study the processes that enhance the star formationrate in some galaxies. The spectra are mostly HII-types, although some25 percent are AGN-types. The broadband images show, among other things,that this sample predominantly consists of of barred signals anddistorted interacting systems, while the H-alpha images show in mostcases small compact sources. Redshifts, line-ratios, equivalent widths,and extinction determinations from the H-beta/H-alpha line ratios arederived from the spectra. Integrated magnitudes, colors, H-alpha fluxes,diameters, and luminosities of the galaxies from the CCD images are alsoderived. Average luminosity profiles of all early-type galaxies andpossible merger candidates in this sample are determined, and it isfound that all these galaxies have exponential disks except two objectsthat follow a de Vaucouleurs r exp 1/4 law: a merger candidate and anelliptical galaxy in a close interacting pair.
| A study of southern extreme IRAS galaxies. II - Radio continuum observations Results are reported of observations of 76 extreme IRAS galaxies withhigh far-infrared/blue luminosity ratios at 6-cm wavelength with the VLAin order to investigate the star-forming regions unimpeded by dust. CCDimages and spectra of these objects are presented, as well as CO(1-0)spectra of a subsample. Twenty radio sources were found to be clearlyresolved with intrinsic sizes, ranging from 0.6 to 2.2 kpc; the upperlimits for the intrinsic size of the unresolved sources are 0.2-1.3 kpc.The resolved sources have a surface brightness similar to that ofgalactic nuclei, but considerably higher than that of galactic disks. Onaverage, some 60 percent of the total flux density derived from thelow-resolution maps is found in the high-resolution data. About 40percent of the total radio power emitted by the galaxies at 6 cm has athermal origin. This ratio is consistent with published radio spectralindices of similar extreme IRAS galaxies.
| Models for infrared emission from IRAS galaxies The far-infrared spectra of galaxies detected in four wavelength bandsby IRAS have been modeled in terms of a cool disk component, a warmerstarburst component, and a Seyfert component peaking at 25 microns.Although the models are found to fit the observed spectra of non-Seyfertand several Seyfert galaxies, a more complex geometry for the dustdistribution is indicated for NGC 1068 and many other Seyfert galaxies.In some cases, the dust in the narrow-line region has a nonsphericallysymmetric geometry.
| The 12 micron galaxy sample. I - Luminosity functions and a new complete active galaxy sample An all-sky 12 micron flux-limited sample of active galaxies was selectedfrom the IRAS Point Source Catalog. Most of the sample galaxies are inexisting catalogs, and 99 percent have measured redshifts. The 12-micronand the far-infrared luminosity functions of active and normal galaxiesare derived using IRAS co-added data. A total of 22 percent of thesample galaxies harbor active nuclei. The sample consists almost equallyof Seyfert 1, Seyfert 2, and LINER nuclei. The derived luminosityfuctions for Seyfert 1 and Seyfert 2 galaxies are indistinguishable fromthose of the optically selected CfA sample. Thus, 12 micron selection isthe most efficient available technique for finding complete activegalaxy samples.
| A wide angle redshift survey of the Hydra-Centaurus region Spectroscopic observations of 266 galaxies in the Hya-Cen region arereported. Redshift data obtained at 350-700 nm with dispersion 21 nm/mmusing the UNIT spectrograph and RPCS detector on the 1.9-m RadcliffeReflector telescope at SAO during March 1985, May 1986, and March 1987are presented in tables and graphs and briefly characterized. It isshown that the Hya supercluster is separated from the Cen superclusterby a large void at right ascension 11 h 40 min, declination -35 deg, andradial velocity 5200 km/sec; a bridge of galaxies at velocity about 3200km/sec connects the two superclusters.
|
Sottometti un nuovo articolo
Link relazionati
Sottometti un nuovo link
Membro dei seguenti gruppi:
|
Osservazione e dati astrometrici
Cataloghi e designazioni:
|